Chemical evolution of star-forming regions.

نویسندگان

  • E F van Dishoeck
  • G A Blake
چکیده

Recent advances in the understanding of the chemical processes that occur during all stages of the formation of stars, from the collapse of molecular clouds to the assemblage of icy planetesimals in protoplanetary accretion disks, are reviewed. Observational studies of the circumstellar material within 100-10,000 AU of the young star with (sub)millimeter single-dish telescopes, millimeter interferometers, and ground-based as well as space-borne infrared observatories have only become possible within the past few years. Results are compared with detailed chemical models that emphasize the coupling of gas-phase and grain-surface chemistry. Molecules that are particularly sensitive to different routes of formation and that may be useful in distinguishing between a variety of environments and histories are outlined. In the cold, low-density prestellar cores, radicals and long unsaturated carbon chains are enhanced. During the cold collapse phase, most species freeze out onto the grains in the high-density inner region. Once young stars ignite, their surroundings are heated through radiation and/or shocks, whereupon new chemical characteristics appear. Evaporation of ices drives a ''hot core'' chemistry rich in organic molecules, whereas shocks propagating through the dense envelope release both refractory and volatile grain material, resulting in prominent SiO, OH, and H2O emission. The role of future instrumentation in further developing these chemical and temporal diagnostics is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical evolution of star forming regions

We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions’ substructure using theQ–parameter, we search for dynamical mass segregation using the ΛMSR technique, and we also quantify the evolution of local density around stars as a function of mass using the ΣLDR method. The amount of dynamical mass segregation measur...

متن کامل

Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model

Gas-phase processes were long thought to be the key formation mechanisms for complex organic molecules in star-forming regions. However, recent experimental and theoretical evidence has cast doubt on the efficiency of such processes. Grain-surface chemistry is frequently invoked as a solution, but until now there have been no quantitative models taking into account both the high degree of chemi...

متن کامل

Chemo - Photometric Evolution of Star Forming Disk Galaxy

The chemical and photometric evolution of star forming disk galaxies is investigated. Numerical simulations of the complex gasdynamical flows are based on our own coding of the Chemo Dynamical Smoothed Particle Hydrodynamical (CD SPH) approach, which incorporates the effects of star formation. As a first application, the model is used to describe the chemical and photometric evolution of a disk...

متن کامل

An Observational Perspective of Low Mass Dense Cores II: Evolution towards the Initial Mass Function

We review the properties of low mass dense molecular cloud cores, including starless, prestellar, and Class 0 protostellar cores, as derived from observations. In particular we discuss them in the context of the current debate surrounding the formation and evolution of cores. There exist several families of model scenarios to explain this evolution (with many variations of each) that can be tho...

متن کامل

On the effect of discrete numbers of stars in chemical evolution models

We examine the impact of discrete numbers of stars in stellar populations on the results of Chemical Evolution Models. We explore the resulting dispersion in the true yields and their possible relation with the dispersion in observational data based on a Simple Closed-Box model. In this framework we find that the dispersion is larger for the less evolved or low abundance regions. Thus, the age-...

متن کامل

Star Formation in Ring Galaxies

Ring galaxies are specific types of interacting galaxies in which a smaller galaxy has passed through the center of the disk of another larger galaxy. The intrusion of the smaller galaxy causes the structure of the larger galaxy to compress as the smaller galaxy falls through, and to recoil back after the smaller galaxy passes through, hence the ring-like shape. In our research, we studied the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annual review of astronomy and astrophysics

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1998